Low-temperature synthesis of bismuth titanate by modified citrate amorphous method

نویسندگان

چکیده

Bismuth titanate is a lead-free piezoelectric ceramic with outstanding properties that strictly depend on the composition and microstructure. However, bismuth-based materials are difficult to synthesize due bismuth volatilisation causes secondary phases stoichiometry deviations. In this work, we propose low-temperature chemical route, i.e. modified amorphous citrate method, allows reduction of thermal treatment temperature, when compared solid-state or other routes, obtain single-phase samples. Single-phase powders particle size under 300 nm produced by calcination at 700 °C, prepared into homogeneous dense pellets (density above 95%), only isolated pores. The show two distinctive features in electrical behaviours directly associated their mica-like microstructure: planar oriented boundaries responsible for oxygen conduction, while bulk dominated electronic conductivity. samples high dielectric constant, around 200 room maintaining low loss factor. also achieved maximum polarisation 5.85 ?C/cm2 an inverse coefficient 7.4 pm/V. obtained comparable superior state-of-the-art.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural and mechanical properties of AFe2O4 (A = Zn, Cu0.5Zn0.5, Ni0.3Cu0.2Zn0.5) nanoparticles prepared by citrate method at low temperature

In this work, the structural and elastic moduli properties of ZnFe2O4, Zn0.5Cu0.5Fe2O4, and Ni0.3Cu0.2Zn0.5Fe2O4 ferrites prepared by the citrate method have been investigated. The structuralcharacterization of the samples is evidence for a cubic structure with Fd-3m space group. TheHalder-Wagner analysis was used to study crystallite sizes and lattice strain and also stressand energy density. ...

متن کامل

Bismuth titanate nanobelts through a low-temperature nanoscale solid-state reaction

In this study, an effective low-temperature method was developed, for the first time, for the synthesis of bismuth titanate nanobelts by using Na2Ti3O7 nanobelts as the reactants and templates. The experimental procedure was based on ion substitution followed by a nanoscale solid-state reaction. In the first step, Na2Ti3O7 nanobelts were soaked in a bismuth nitrate solution where ion substituti...

متن کامل

Structural and Optical Properties of Sr-Modified Bismuth Silicate Nanostructured Films Synthesized by Sol Gel Method

In this work, the effects of strontium addition on the structure and optical properties of nanostructured bismuth silicate (Bi4Si3O12) thin films prepared via sol-gel were studied. At first, different sols containing the optimum ratio of precursors were synthesized, and then, the prepared sols were coated on the substrate via dip coating. The dip coated samples were dried at 100oC and, in order...

متن کامل

Synthesis of bismuth telluride nanostructures by refluxing method

Bismuth telluride (Bi2Te3) nano particles were prepared by refluxing method in different conditions such as varying concentration of KOH and reaction timings. X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements have been performed for structural and phase formation studies. The nanoparticles are showing the same structure of bulk except broadening of peak confirmed b...

متن کامل

Synthesis and Characterization of Carbon Nanotubes Decorated with Magnesium Ferrite (MgFe2O4) Nanoparticles by Citrate-Gel Method

In the present work, magnetic nanocomposites of the multi-walled carbon nanotubes (MWCNTs) decorated with magnesium ferrite (MgFe2O4) nanoparticles were synthesized successfully by citrate-gel method. The shape, structure, size, and properties of the as-synthesized sample were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction pattern (XRD), transmission electron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ceramics International

سال: 2021

ISSN: ['0272-8842', '1873-3956']

DOI: https://doi.org/10.1016/j.ceramint.2021.01.058